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Abstract 14 

Novel multifunctional food packaging was developed by incorporating blood 15 

orange anthocyanins (BOA) and thyme oil (TO) emulsion into a chitosan-gum Arabic 16 

film matrix. The basic properties, pH/volatile acid sensitivity, and functional 17 

characteristics of the multifunctional films were investigated. BOA solution illustrated 18 

significant color variations (from pink to violet to yellow) under different pH 19 

environments. The incorporation of anthocyanin and emulsion enhanced the UV-vis 20 

blocking, which made the film block almost all UV light. Meanwhile, the 21 

multifunctional film had stronger mechanical strength and thermal stability, whose 22 

elongation at break reached 76.1%, and the maximum degradation temperature raised 23 

to 305℃. The incorporation of TO emulsion significantly enhanced the films' water 24 

resistance and made the water vapor barrier properties of the films reduce to 6.34×10-25 

11 g/Pa•h•m. In addition, the multifunctional films exhibited noticeable changes of color 26 

in acid/alkaline environments within a short time interval, which could be easy to 27 

distinguish by naked eyes. The addition of emulsion made the multifunctional films 28 

slow-release of thyme oil, which significantly improved the antioxidant and dynamic 29 

antibacterial capacity of the films. Finally, the multifunctional films effectively 30 

extended the shelf-life of milk at 25℃ and visually monitored freshness through the 31 

color changes in real-time. This knowledge provides a new perspective and idea to 32 

develop multifunctional food packaging materials with preservation and monitoring 33 

functions. 34 
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1. Introduction 38 

In response to the growing concerns of consumers about food safety, sustainability, 39 

and environmental impact, new advanced biodegradable, active and intelligent food 40 

packaging materials have attracted extensive attention from researchers in the food 41 

industry (Alizadeh Sani, Tavassoli, Salim, Azizi-lalabadi, & McClements, 2022). 42 

Among them, intelligent packaging is designed to monitor changes in environmental 43 

conditions and food ingredients during storage in real time, and then provide naked 44 

eyes with readable signals, such as color changes (Mohammadian, Alizadeh-Sani, & 45 

Jafari, 2020; Pirsa, Sani, & Mirtalebi, 2022). Furthermore, consumers can quickly 46 

distinguish the freshness of internal food without opening the package, improving food 47 

quality and reducing food waste (Sani, Tavassoli, Hamishehkar, & McClements, 2021; 48 

Zhang, et al., 2021). Active packaging can be designed to maximize its functional 49 

performance by adding antibacterial agents and antioxidants, which can prevent food 50 

from spoilage during storage (Sani et al., 2021; Azman, Khairul, & Sarbon, 2022). 51 

Thyme oil is a volatile aromatic substance extracted from thyme, which has excellent 52 

antioxidant and broad-spectrum antibacterial activity (Zhang et al., 2021). 53 

Anthocyanins are a family of plant-derived, non-toxic, biodegradable, water-54 

soluble pigments with excellent antioxidant and antibacterial activities (Fernández-55 

Marín, Fernandes, Sánchez, & Labidi, 2022). Importantly, anthocyanins have a 56 

sensitive color response to a wide range of acid-base changes due to the alterations in 57 

their conjugated structure (Pirsa, Sani, & Mirtalebi, 2022; Wu et al., 2019). Blood 58 
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orange (Citrus sinensis L. Osbeck) is the only commercial citrus fruit containing 59 

anthocyanins (Carmona, Alquezar, Marques, & Pena, 2017). In addition to providing a 60 

unique color among citrus fruits, blood orange anthocyanins (BOA) are also related to 61 

human health because of their antioxidant activity (Habibi, et al., 2022). At present, 62 

there are many studies about developing food packaging films based on citrus 63 

processing products and wastes (Yun & Liu, 2022). However, the potential 64 

practicability of BOA in the development of intelligent packaging has not yet been 65 

reported. Consequently, BOA, as the source of "blood" in blood orange, can be used as 66 

an antioxidant and colorimetric sensor in intelligent packaging materials, which can be 67 

applied to monitor the food quality by changing color in response to changes in food 68 

pH or other characteristics (Becerril, Nerín, & Silva, 2021; Huang, et al., 2022; Neves, 69 

Andrade, Videira, de Freitas, & Cruz, 2022; Roy & Rhim, 2021a). 70 

Many essential oils are “generally recognized as safe” (GRAS) food additives and 71 

can be used as natural antibacterial agents in the food industry (Zhao et al., 2020; 72 

Mukurumbira, Shellie, Keast, Palombo, & Jadhav, 2022). Because of its high 73 

hydrophobicity and volatility, researchers developed an emulsion encapsulation system 74 

based on ultrasonic treatment to improve its stability and antibacterial activity (Guo et 75 

al., 2020; Yang, He, Ismail, Hu, & Guo, 2022). The emulsifier is adsorbed on the surface 76 

of oil and water, which form a protective layer to protect the essential oil from external 77 

influences (Zhao et al., 2020). At the same time, the essential oil can be slowly released 78 

from the emulsion, which also gives the film a slow-release effect on the essential oil 79 
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when the emulsion was incorporated into the film (Zhang, Jiang, Rhim, Cao, & Jiang, 80 

2022). Hereby, the essential oil emulsion can be used as an antibacterial agent to 81 

improve the physical and functional properties of films (Zhang et al., 2021; 82 

Mukurumbira, et al., 2022). 83 

From an environmental point of view, these packaging films made from natural 84 

biological macromolecules (such as proteins and polysaccharides) have green, 85 

environmental-friendly and biodegradable advantages over petroleum-based films 86 

(Atta, et al., 2022; Chen, et al., 2022). Chitosan (CS) is a polycationic polysaccharide 87 

derived from chitin after deacetylation and has been widely used in food packaging 88 

systems because of its nontoxicity, great biocompatibility, biodegradability, and film-89 

forming properties (Zhao, Zhang, Chen, Song, & Li, 2022). Gum Arabic (GA), a natural 90 

polyanionic heteropolysaccharide extracted from the branches or trunks of Acacia trees, 91 

can interact with polycationic polymers such as chitosan (Xu et al., 2019). Therefore, 92 

chitosan/gum Arabic nanocomposite films are expected to show better functional 93 

properties. 94 

To sum up, the development of novel intelligent and active multifunctional food 95 

packaging films has excellent potential, whose ultimate goal is to improve food safety, 96 

quality, and sustainability. Hence, the objective of this research was to fabricate a novel 97 

biodegradable multifunctional food packaging, using chitosan and gum Arabic to 98 

assemble the film matrix, BOA as pH indicators, and thyme oil emulsion to provide an 99 

antibacterial and slow-release effect to improve the shelf-life of food (Fig. 1). The 100 
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influence of anthocyanin and emulsion on films’ physical properties and structure were 101 

investigated. Meanwhile, the pH and volatile acids sensitivity, as well as essential oil 102 

release characteristics, were determined. Furthermore, the antioxidant and antibacterial 103 

activity of multifunctional films were also measured. Finally, the practical application 104 

effect of multifunctional films on milk preservation and freshness monitoring was 105 

investigated. 106 

2. Materials & methods 107 

2.1. Materials 108 

Thyme essential oil (TO, W306540) was obtained from Sigma-Aldrich (St. Louis, 109 

MO, USA). Cinnamaldehyde (CA, purity ≥ 98%) was purchased from Aladdin Reagent 110 

Co. (Shanghai, China). Chitosan (CS, MW 280 kDa, degree of deacetylation = 85%) 111 

was purchased from Zhejiang Golden-Shell Pharmaceutical Co. (Zhejiang, China). 112 

Gum Arabic (GA, MW 250 kDa) was provided by the G-GLONE Biotechnology Co. 113 

(Beijing, China). Polyvinyl alcohol (PVA, 1799) and glycerol were purchased by 114 

RHAWN Co. (Shanghai, China). Nutritional agar (NA), and nutritional broth (NB) 115 

were obtained from Gaoke Haibo biotechnology Co., Ltd (Qingdao, China). Three 116 

different brands of pasteurized milk were purchased from Wal-Mart Supermarket 117 

(Hangzhou, China). Chemicals other than those used in this study were of analytical 118 

grade. 119 

2.2. Extraction of anthocyanins from blood orange 120 

Anthocyanins were isolated from blood oranges using the method with some 121 
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modifications (Kim, Roy, & Rhim, 2022). After the blood oranges flesh was 122 

homogenized, the sample was extracted with anhydrous ethanol in the dark for 24 h at 123 

25℃. Afterward, the sample was filtered and centrifuged at 6000×g for 15 min. The 124 

supernatant was collected, filtered, and concentrated by removing the ethanol using a 125 

rotary evaporator (50℃). The sample was adsorbed overnight with D101 macroporous 126 

adsorption resin in a dark place. After that, the sample was eluted with 60% ethanol at 127 

pH 3, and the eluent was rotary-evaporated at 50℃. Then, the eluent was extracted with 128 

ethyl acetate and concentrated by a rotary evaporator (50℃) again. Finally, the extract 129 

solution was freeze-dried and the anthocyanin extract powders were obtained. The total 130 

anthocyanin content in the obtained powders was (176.35 ± 1.2) mg/g, determined by 131 

the pH difference method (Chen, Yan, Huang, Zhou, & Hu, 2021). 132 

2.3. Fabrication of thyme oil emulsion 133 

A two-step emulsification method was used to fabricate thyme oil emulsion (Yang 134 

et al., 2022; Zhao et al., 2020). TO (4 wt% in the emulsion) and cinnamaldehyde (CA, 135 

2.5 wt% in the oil phase) were mixed evenly as the oil phase. The aqueous phase was 136 

composed of CS (0.2 wt%) and PVA (2 wt%) at pH 6.5. Firstly, the oil and water mixture 137 

were homogenized by a high-speed homogenizer (FJ200-S; Lichen Instrument 138 

Technology Co. Ltd, Hunan, China) at 12,000 rpm for 3 min in an ice bath to get a 139 

coarse emulsion. Secondly, the coarse emulsion was sonicated by a 20 kHz ultrasonic 140 

processor (Scientz-II D; Ningbo Scientz, Zhejiang, China) at 450 W in the ice bath for 141 

10 min (ultrasound 5 s, pause 5 s) and adjusted pH to 4 to formulate the final emulsion. 142 
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2.4. Fabrication of multifunctional films 143 

Initially, the CS/GA solution was prepared by mixing chitosan (2 wt%) and gum 144 

Arabic (2 wt%) solution, evenly stirring for 2 h. Subsequently, anthocyanins (1 mg/mL 145 

and 3 mg/mL) were added into CS/GA solution with continual stirring. After that, the 146 

emulsion (keeping the concentration of thyme oil in film at 20 mg/g) was added into 147 

the polysaccharide solution, and 0.5 wt% glycerol was served as a plasticizer. The 148 

emulsion in the control group was replaced by distilled water. Ultimately, the 25 mL 149 

film-forming solutions were cast on a Petri dish (15 cm × 15 cm) and dried for 48 h in 150 

a dark air vacuum oven (35℃). The final films were stored with 50% RH at 25℃ in a 151 

dark place before analysis. For the sake of convenience, the final films were labeled as 152 

CS/GA, A-CS/GA, E-CS/GA, 1A-E-CS/GA, and 3A-E-CS/GA. “CS/GA” was the 153 

chitosan/gum Arabic film, “A-CS/GA” was the chitosan/gum Arabic film with 3 154 

mg/mL anthocyanin content, “E-CS/GA” was the TO emulsion-chitosan/gum Arabic 155 

film, “1A-E-CS/GA” and “3A-E-CS/GA” were the TO emulsion-chitosan/gum Arabic 156 

films with 1 mg/mL and 3 mg/mL anthocyanin content. 157 

2.5. Colorimetry and optical properties of multifunctional films 158 

2.5.1. Color coordinates 159 

The color change of the films under different pHs was determined with the 160 

colorimeter (CR-10, Konica Minolta, Tokyo, Japan). Briefly, the films were immersed 161 

in different buffer solutions (pH 3.0-13.0) for 10 min. The appearance of films was 162 

captured, and the parameters of color were recorded. The total color difference (ΔE) 163 
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was calculated as follows: 164 

∆E = √(𝐿1 − 𝐿2)2 + (𝑎1 − 𝑎2)2 + (𝑏1 − 𝑏2)2                         (1) 165 

where L1, a1, and b1 represented the color parameters of each film. L2 (94.61), a2 (-1.36), 166 

and b2 (-0.17) were the standard white screen's color coordinates. 167 

2.5.2. UV-vis barrier performance and transparency 168 

The UV-vis barrier performance and transparency of the films were evaluated 169 

through an ultraviolet spectrophotometer (UV-2600, Shimadzu, Tokyo, Japan). The 170 

film strips were placed into a spectrophotometer cell and recorded from 200 to 800 nm 171 

(Mahmood Alizadeh-Sani, Tavassoli, McClements, & Hamishehkar, 2021). Air was 172 

used as a blank sample. The transparency of the films was then calculated as follows: 173 

Transparency =
log𝑇600

𝐷
                                             (2) 174 

where T600 was the optical transmittance of films at 600 nm (cm-1) and D was the 175 

thickness (mm) of films. 176 

2.6. Physicochemical characterization of multifunctional films 177 

2.6.1. Thickness, moisture content (MC), and water-solubility (WS) 178 

The thickness was determined by measuring five random locations on a film. And 179 

the MC and WS were determined according to the previous report (Zhang et al., 2021). 180 

Firstly, the films were weighed and then dried in an oven (105℃ for 24 h) to constant 181 

weight. Secondly, the dried films were immersed in distilled water at 25℃ for 24 h. 182 

Finally, the surface water was removed from the films by filter paper and dried in an 183 

oven at 105℃ 24 h. The MC and WS of the films were calculated as follows: 184 
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MC (%) =
𝑚0−𝑚

𝑚0
× 100                                             (3) 185 

WS (%) =
𝑚−𝑚1

𝑚
× 100                                             (4) 186 

where m0 was the weight of films before drying (g). m was the weight of films after 187 

drying (g). m1 was the drying weight of the films after immersing in water (g). 188 

2.6.2. Mechanical properties and thermal stability (TGA) 189 

Tensile strength (TS) and elongation at break (EB) were measured with a texture 190 

analyzer (Universal TA, Shanghai Tengba Instrument Technology Co., Ltd, China). The 191 

mechanical properties of the film (1 cm × 4 cm) were tested at a constant speed of 10 192 

mm/s with an initial gap separation of 20 mm. 193 

The thermal stability of the films was measured using a thermogravimetric 194 

analyzer Mettler Toledo STARe System TGA2, Mettler Toledo Co, Switzerland). The 195 

film samples were placed in a pan and scanned at a heating rate of 10 °C/min at a 196 

temperature range of 30-600℃ under a nitrogen atmosphere. 197 

2.6.3. Water vapor permeability (WVP) and water contact angle 198 

The WVP was measured according to the previous report with some modifications 199 

(Chen, et al., 2016). Each film was sealed on the top of a permeability cup (35 mm inner 200 

diameter and 39 mm depth) filled with anhydrous calcium chloride. Each cup was 201 

weighed periodically every 2 h for 2 d in an incubator with 75% RH at 25℃. The water 202 

vapor permeability was calculated as follows: 203 

WVP =
∆𝑊·𝐷

∆𝑡·𝑆·∆𝑝
                                                   (5) 204 

where WVP was in g/Pa·h·m, ∆W is the gained weight of the cup (g), ∆t is the time of 205 
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weight change (h), S was the exposed area of the films (m2), D was the mean thickness 206 

of samples (m), and ∆p was the difference in partial water vapor pressure between the 207 

two sides of films (Pa). 208 

The water contact angle measurements were performed using an optical contact 209 

angle analyzer (OSA200-T, New boundary Scientific Instrument Co. Ltd., Zhejiang, 210 

China). A drop of ultrapure water (10 μL) was firstly placed on the surface of the films. 211 

The image of the drop was then taken by a high-speed video camera, and the contact 212 

angle was determined using the software after 5 s of the droplet deposition. 213 

2.6.4. Scanning electron microscopy (SEM) 214 

The film was immersed in liquid nitrogen to break, and the cross-section was 215 

exposed. Afterward, the films were placed on the specimen holder, which was sputtered 216 

by gold in a sputter coater. The films' morphology was examined by scanning electron 217 

microscopy (SU-8010, HITACHI, Tokyo, Japan) at an accelerating voltage of 3 kV. 218 

2.6.5. Fourier transform infrared (FT-IR) spectroscopy 219 

The FT-IR spectra of the films were obtained using the attenuated total reflectance 220 

Fourier Transform Infrared spectrometer (Vertex 670, Agilent Technologies, Santa 221 

Clara, CA, USA) in the range of 4000 to 400 cm-1. Each sample spectrum was collected 222 

with 32 scans and 4 cm-1 resolution. 223 

2.6.6. X-ray diffraction (XRD) 224 

The crystal phase of the films was analyzed by an X-ray diffractometer (Bruker 225 

D8 Advance, Karlsruhe, Germany) equipped with Cu Kα radiation (40 kV, 30 mA). The 226 
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XRD patterns of films were scanned from 5-50° (2θ) at 2°/min speed. 227 

2.7. Functional characterization of multifunctional films 228 

2.7.1. Acid gas sensitivity test 229 

The films (2 cm diameters) were held above an acetic acid solution in a petri dish 230 

at 25°C for 30 min to expose the films to acid gas. The acid gas response of the films 231 

was captured and recorded by the digital camera at every 5 min intervals in 30 min. 232 

2.7.2. Thyme oil release in food simulants 233 

The release of TO was measured using different kinds of food simulant solutions 234 

(20 mL, water, 10% (v/v), 50% (v/v), and 95% (v/v) alcohol for simulating aqueous, 235 

alcoholic, and oil-in-water emulsions, and fatty food, respectively) (Lee, Kim, & Park, 236 

2018). Briefly, the films (2 cm × 2 cm) were immersed in 20 mL of simulant, which 237 

was stored at 37℃ with 150 r/min. At appropriate intervals, the simulated solutions (1 238 

mL) were collected and measured the absorbance at 274 nm using a UV-vis 239 

spectrophotometer (UV-2600, Shimadzu, Tokyo, Japan). 240 

2.7.3. Antioxidant quenching activity 241 

The antioxidant activities of films were evaluated by DPPH and ABTS+ radical 242 

scavenging methods (Roy & Rhim, 2021c). The film samples were mixed with DPPH 243 

and ABTS assay solution in the dark for 1 h at room temperature and measured the 244 

absorbance at 517 nm and 734 nm using a UV-vis spectrophotometer (UV-2600, 245 

Shimadzu, Tokyo, Japan). The radical scavenging ability was calculated by the 246 

following equation listed as follows: 247 
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Radical scavenging activity (%) = (1 −
𝐴

𝐴0
) × 100                     (6) 248 

where A and A0 were the absorbances of the solutions treated with and without films, 249 

respectively. 250 

2.7.4. Antibacterial activity 251 

A total viable colony count method was used to determine the antibacterial assay 252 

of films against foodborne pathogenic bacteria E. coli and S. aureus according to the 253 

previous reports with some modifications (Roy & Rhim, 2021b; Zhao et al., 2020). 254 

Firstly, the films (2 cm × 2 cm) were added into the liquid medium which were 255 

inoculated microorganisms (about 105 CFU/mL). All samples were incubated at 37℃ 256 

for 24 h with agitation at 100 rpm, and the resulting curves were constructed by 257 

counting the total number of viable colonies by a plate count method. Specifically, 258 

appropriate amount of microbial suspension was removed at predetermined time 259 

intervals (0, 2, 4, 8, 12, 18 and 24 h), plated on agar plates after appropriate dilution to 260 

determine the viable colony count. 261 

2.8. Application of the films to milk preservation freshness monitoring 262 

The actual functional effect of the films was evaluated by exploring the abilities 263 

to indicate milk quality during storage (Gao et al., 2022). The films were adhered to the 264 

bottle wall and soaked into 5 mL milk at 25℃ for storage. The pH and acidity of milk 265 

were measured at different time points, and the films were taken out and wiped on the 266 

surface to determine the color parameters. The acidity (°T) is expressed in the amount 267 
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of 0.1 mol/L sodium hydroxide consumed to neutralize 100 mL of milk, which was 268 

determined using the acid-base titration method as the previous report with some 269 

modifications (Gao et al., 2022). 270 

2.9. Statistical analysis 271 

All the experiments were performed in triplicate and expressed as the form of 272 

mean ± standard deviation. The statistical tests were analyzed by SPSS software 273 

(version 25.0, IBM; Armonk, N. Y, USA). All statistical data were evaluated by 274 

ANOVA, and significance was defined as P < 0.05. 275 

3. Results and discussion 276 

3.1. Characterization of BOA solutions at different pH 277 

The BOA solutions changed color from red to pink (pH 1.0-4.0) and pink to violet 278 

(pH 4.0-10.0), as well as a sudden color change from violet to yellow (pH 10.0-14.0) 279 

(Fig. 2A). These color changes were associated with pH-dependent alterations in the 280 

anthocyanin molecular structure, consistent with the observed UV-vis spectra of BOA 281 

solutions (Fig. 2C). With the increasing pH value, the maximum absorption wavelength 282 

of BOA shifted from 521 nm to 580 nm, which was similar to previous reports (Chen, 283 

Zhang, Bhandari, & Yang, 2020; Kim et al., 2022). These results might be attributed to 284 

the reversible structural changes of anthocyanin from acidic to alkaline aqueous 285 

medium (Fig. 2B): flavylium cation (pH < 4); carbinol pseudo base (pH 4-5); 286 

quinonoidal anhydro base (pH 5-7); anionic quinonoidal base (pH 7-10) and chalcone 287 

(pH > 10) (Mahmood Alizadeh-Sani et al., 2021). The apparent pH-dependent color 288 

Jo
urn

al 
Pre-

pro
of



16 

 

variation suggested that BOA was a suitable choice for developing intelligent 289 

packaging. 290 

3.2. Physicochemical characterization of multifunctional films 291 

3.2.1. Appearances and optical properties of films 292 

The CS/GA film was neat and transparent, while the E-CS/GA film changed 293 

yellowish slightly with emulsion, and the BOA-added films were dark green (Table 1). 294 

Correspondingly, L* value and a* value decreased significantly with the addition of 295 

anthocyanin. Moreover, the transparency of the films decreased with the addition of the 296 

emulsion, which might be due to the emulsion droplets scattered light in the films (Chen 297 

et al., 2016). It should be noted that in the BOA addition films, the primary color of 298 

anthocyanin was purple-red, but it turned green due to the slight alkalinity of the 299 

chitosan/gum Arabic mixture. This phenomenon was similar to previous studies on 300 

anthocyanin-chitosan, gelatin/agar, and gelatin/carrageenan films (Kim et al., 2022; 301 

Yong, Wang, Zhang, et al., 2019; Roy & Rhim, 2020). 302 

Compared with CS/GA film, the A-CS/GA film had stronger light barrier 303 

properties, whose transmittance decreased by about 20% (Fig. 3A). A possible 304 

explanation was that the anthocyanin was able to absorb both ultraviolet and visible 305 

radiation (Yong, Wang, Bai, et al., 2019). The emulsion further reduced the 306 

transmittance by more than 90% in the ultraviolet region at 200-400 nm. These results 307 

could be explained by the dispersion of emulsion droplets in the films, blocking the 308 

optical path or scattering light (Roy & Rhim, 2021b). 309 
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3.2.2. Thickness, moisture content and water solubility of films 310 

The thickness of multifunctional films ranged from 34.35 to 44.2 μm (Table 1). 311 

The addition of emulsion increased the film thickness obviously, which might be due 312 

to more substances remaining in the films after dehydration (Sani et al., 2021). The 313 

incorporation of anthocyanin had no significant effect on the films' moisture content 314 

and water solubility (P＞0.05). However, with the addition of emulsion, these two 315 

properties decreased obviously. There might be two reasons for these results: (i) The 316 

strong hydrophobicity of essential oil further hindered the contact between the film 317 

matrix and water (Zhang et al., 2021). (ii) The amino and hydroxyl groups of chitosan 318 

interacted with anthocyanin, which reduced the accessibility of free -OH groups and 319 

affected the ability to absorb water (Yong, Wang, Zhang, et al., 2019). 320 

3.2.3. Water vapor permeability and water contact angle of films 321 

The incorporation of BOA increased the water vapor transmittance slightly (Fig. 322 

3B). After adding the emulsion, the water vapor barrier property was enhanced 323 

obviously, which might be due to the strong hydrophobic essential oil intercepting most 324 

of the water and increasing the tortuous path of water molecules through the films 325 

(Zhang et al., 2022). The water vapor transmittance of 1A-E-CS/GA films was further 326 

reduced to 5.78×10-11 g·m-1·h-1·Pa-1, which two aspects could explain: (i) A small 327 

amount of anthocyanin interacted with the film matrix and acted as a bridge between 328 

among substrate chains, forming a dense network (Yong, Wang, Bai, et al., 2019). (ii) 329 

A large amount of aromatic ring in anthocyanin skeleton structure hindered the internal 330 
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network of the films and reduced the affinity for water molecules (Chen et al., 2021; 331 

Wang et al., 2019). In contrast, a higher amount of anthocyanin (3A-E-CS/GA) might 332 

lead to a decrease in the density of films (Fig. 4), thereby increasing the water vapor 333 

permeability (Yong, Wang, Zhang, et al., 2019). Compared with previous relevant 334 

studies which added anthocyanins or essential oil to the biopolymer (such as chitosan, 335 

gum, κ-carrageenan, or cellulose) films, our multifunctional film had better water 336 

resistance, which was conducive to protecting the excessive loss of food moisture 337 

during storage (Rosenbloom, Wang, & Zhao, 2020; Wang, Zhang, & Zhang, 2022; Yong, 338 

Liu, Kan, & Liu, 2022). 339 

Generally, the water contact angle at 90° is usually defined as the critical point for 340 

determining hydrophilicity or hydrophobicity (Zhang et al., 2022). The water contact 341 

angle images and values of films are reported in Fig. 3C. The contact angle of CS/GA 342 

films was 81.83°, and the addition of many anthocyanins reduced the contact angle by 343 

74.64°. These results were due to a great number of free hydroxyl groups in the film 344 

matrix and the high hydrophilicity of anthocyanin (Liu et al., 2022). With the 345 

incorporation of emulsion, the films' contact angle increased obviously to 96.7°, which 346 

could be attributed to the increase of hydrophobic components (thyme oil) and surface 347 

roughness of the films (Liu et al., 2022). It is important to note that a small amount of 348 

anthocyanin addition enhanced the hydrophobicity of the films, which was similar to 349 

the results of WVP, which could be attributed to the aromatic ring of anthocyanin 350 

structure and the interaction between anthocyanin and film matrix (Wang et al., 2019). 351 
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3.2.4. Mechanical property and structures of films 352 

The mechanical strength of CS/GA films was poor, where the tensile strength (TS) 353 

was 20.45 MPa, and the elongation at break (EB) was 40.78% (Table 1). The addition 354 

of anthocyanin enhanced the mechanical strength and flexibility of the films, but there 355 

was no significant change (P＞0.05). The addition of emulsion improved the films' 356 

mechanical properties significantly, which could be due to the interaction between 357 

emulsion droplets and the film matrix, producing a cross-linking agent effect (Haghighi 358 

et al., 2019; Ojagh, Rezaei, Razavi, & Hosseini, 2010). In addition, the TS of emulsion 359 

films decreased from 34.87 to 31.89 MPa, while the EB increased from 61.26 to 76.1% 360 

with the increase of anthocyanin content. This phenomenon could be due to the strong 361 

plasticization of anthocyanin, which destroyed the secondary bonds and improved the 362 

fluidity of polymer molecule chains in the films (Kim et al., 2022). Meanwhile, the 363 

rearrangement of biopolymer produced uneven network and discontinuous pore 364 

structure in the films (Haghighi et al., 2019), which also led to a decrease in tensile 365 

strength, as shown by the microstructure of the films (Fig. 4). Previous researchers 366 

added cinnamon and clove essential oil to chitosan-gum Arabic film. The maximum TS 367 

of the composite film was 24.06 MPa and the maximum EB was 41.03% (Xu et al., 368 

2019). Compared with it, our multifunctional film had stronger mechanical strength, 369 

which might be more suitable for a variety of food packaging. It can be observed that 370 

CS/GA films had compact and smooth micro-morphology, which indicated a good 371 

interaction and compatibility between gum Arabic and chitosan matrix. The addition of 372 

Jo
urn

al 
Pre-

pro
of



20 

 

BOA made the film cross-section smoother. It was related to the plasticizing effect of 373 

anthocyanin (Wu et al., 2019). When the emulsion was added to the film matrix, the 374 

film surface was rough, and the cross-section became porous, similar to previous 375 

studies (Kong et al., 2020; Liu, Shen, Yang, & Lin, 2021). The existence of pores was 376 

mainly due to the essential oil in the film matrix volatilizing and migrating to the top 377 

during the casting process (Liu et al., 2022; Xu et al., 2020; Zhang et al., 2021). 378 

3.2.5. The molecular interaction and crystallinity of films 379 

The intermolecular interaction of the films was further analyzed by FT-IR and 380 

XRD. The molecular characteristics of BOA and the multifunctional films observed 381 

through FT-IR are presented in Fig. 5A. The FT-IR spectrum of free anthocyanins 382 

showed that the characteristic band at 1639 cm-1 was caused by the benzene skeleton 383 

vibration in anthocyanins (Wu et al., 2019), and the peak at 2932 cm-1 was assigned to 384 

the stretching vibration of -CH, -CH2, and -CH3. The board and drastic band at around 385 

3369 cm-1 was attributed to the stretching vibration of the -OH and hydrogen bond. 386 

After anthocyanins were added into the films, the characteristic band at 1639 cm-1 was 387 

masked, indicating that the films immobilized the anthocyanins and had a certain 388 

protective effect. Meanwhile, the absorption peak near 3369 cm-1 attributed to the 389 

overlapping stretching vibration of -OH becomes wider, indicating that a hydrogen 390 

bond was formed between BOA and the film matrix (Chen et al., 2021). The peaks at 391 

1563 cm-1 and 1409 cm-1 of CS/GA film, which were caused by the carboxy group 392 

(overlapped with N-H bending) and -CH2COOH group of chitosan, shifted to 1574 cm-393 
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1 and 1411 cm-1 for the A-CS/GA film, and to 1565 cm-1 and 1414 cm-1 for the 3A-E-394 

CS/GA. This band shifting might be attributed to aromatic ring stretching due to the 395 

interaction between the anthocyanin and the glycosylated polymers matrix (Sohany, 396 

Tawakkal, Ariffin, Shah, & Yusof, 2021). The FT-IR results showed that no new 397 

chemical bonds were formed during the film preparation, indicating that materials were 398 

formed in a non-covalent cross-linking method (Wu et al., 2019). As a color indicator, 399 

anthocyanins were anchored inside the film matrix by hydrogen bonds with electrostatic 400 

interactions (Liang, Sun, Cao, Li, & Wang, 2019). 401 

There was no obvious change in the position of the peaks, and no new peaks 402 

appeared in the XRD patterns (Fig. 5B), indicating that the emulsions and BOA were 403 

well dispersed in the film matrix (Huang, et al., 2019). Meanwhile, all films had similar 404 

XRD patterns, which appeared with a single diffraction peak at 19.7°, while the 405 

intensity was significantly different. The peak strength of the films increased slightly 406 

with the addition of BOA, which might be due to the plasticization of anthocyanin and 407 

the electrostatic interaction between the film matrix and BOA (Liang, Sun, Cao, Li, & 408 

Wang, 2019). The addition of emulsion significantly increased the crystallinity of the 409 

films, which indicated that there was a stronger interaction between the filler and the 410 

matrix, and was conducive to the enhancement of the mechanical and barrier properties 411 

of the films (Tavassoli, Sani, Khezerlou, Ehsani, & McClements, 2021). 412 

3.2.6. Thermal stability of films 413 

The weight loss of the film without emulsion was divided into three stages during 414 
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thermal degradation (Fig. 5C and D). The first stage was observed at 50-105℃, 415 

attributed to the water vaporization. The second weight change was 130-230℃, caused 416 

by glycerol decomposition (Ezati & Rhim, 2020). The third weight stage (230-320℃) 417 

corresponded to the thermal depolymerization and decomposition of the film matrix 418 

(Yong, Wang, Bai, et al., 2019). The 3A-E-CS/GA film took the fourth stage of 419 

weightlessness at 400-450℃, which was related to the incorporation of emulsion, 420 

suggesting the loss of high-temperature stable components (Liu et al., 2021). Moreover, 421 

when anthocyanin and emulsion were added to the films, the weight loss of the first and 422 

the second stages decreased significantly, indicating that the interaction between 423 

anthocyanin and glycerol could reduce the glycerol decomposition rate (Wang et al., 424 

2019). A previous study incorporated blueberry anthocyanins into ovalbumin-cellulose 425 

film and found the main degradation peaks of the films moved to higher temperatures 426 

with the addition of anthocyanins, which was similar to our results (Liu, et al., 2022). 427 

Meanwhile, the emulsion droplets could reduce the moisture content in the films and 428 

interact with the film matrix, thus enhancing the thermal stability of the films (Xu et al., 429 

2019). 430 

3.3. Color response of films to pH and volatile acid 431 

The color response performance of multifunctional films at different pH is shown 432 

in Table 2. CS/GA film was always gray-white, and its color parameters had no 433 

apparent change. The E-CS/GA film's color was yellowed by the addition of emulsion, 434 

while it still did not have pH color responsiveness. In contrast, when the pH changed 435 
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from 3.0 to 13.0, the films added with BOA exhibited a significant color change from 436 

pink to green. Meanwhile, with the pH increase, the a* decreased, while the b* 437 

increased. In addition, the film color deepened accordingly with the increase of 438 

anthocyanin content. These phenomena were due to the structural transformation of 439 

anthocyanins under different acid-base conditions, which were similar to previous 440 

research on the packaging films containing anthocyanins from other sources (Wu et al., 441 

2019; Alizadeh Sani et al., 2022; Chen et al., 2021). In addition, all anthocyanin films’ 442 

ΔE values were more than 5.0, indicating that the chromatic aberration was easy to be 443 

observed by the naked eyes (Chen et al., 2021). In addition, the films' pH color 444 

sensitivity had excellent stability (Table S1). After storage in indoor conditions for 3 445 

months, the films still had a sensitive color response to pH change, whose color changed 446 

from red to green and then to yellow with the increase of pH. In particular, the ΔE values 447 

of the 3A-E-CS/GA film could still be maintained above 15, indicating that the color 448 

change was easy to recognize by the naked eyes. These results suggested that the films 449 

had great color stability, which had a specific protective effect on anthocyanins. 450 

The color sensitivity of films to acid gas is presented in Fig. S3. When anthocyanin 451 

films were exposed to volatile acids, their color changed significantly from yellow-452 

green to red over time. The films with high anthocyanin content showed noticeable 453 

color changes, from green to yellow-green after 10 min and pink after 15 min. These 454 

results indicated that this multifunctional film had the potential to monitor food 455 

freshness in real time. 456 
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3.4. Release profiles of thyme oil and anthocyanin in films 457 

There were mainly two steps involved in the release behavior of essential oil from 458 

films. Firstly, the liquid molecule penetrated the polymer matrix, causing the polymer 459 

network structure to expand and weaken. Afterward, essential oil molecules were 460 

diffused from inside the films to the stimulants until reaching the thermodynamic 461 

equilibrium (Zhang et al., 2021). Depending on the type of food stimulants, thyme oil 462 

was released at varying rates. In most cases, the release rate was rapid at first but slowed 463 

down to equilibrium after 12 h. The release effect of thyme oil was the worst in water, 464 

which only reached 19.16 μg/mm2 (Fig. 6A). Thyme oil was a hydrophobic substance 465 

that was released faster in alcohol solutions than in water. However, the release rate was 466 

related to the concentration of alcohol. The release rate in 50% alcohol was higher than 467 

95%, and the release rate in 10% alcohol was the lowest. The low release rate in 95% 468 

alcohol solution might result from the slight swelling of biopolymer films under high 469 

alcohol conditions (Roy & Rhim, 2020). 470 

The anthocyanin was released the fastest in the 10% alcohol solution, followed by 471 

water, 50% alcohol, and 95% alcohol solutions (Fig. S2), mainly due to the polarity of 472 

water-soluble anthocyanin pigment. The release rate was affected by the type and 473 

polarity of the food simulant and the swelling of the film (Alizadeh-Sani, et al., 2021). 474 

This result was similar to the previously reported results of the release of other 475 

anthocyanins from biopolymer film into food simulants (Alizadeh-Sani, Tavassoli, 476 

McClements, & Hamishehkar, 2021; Alizadeh Sani, Tavassoli, Salim, Azizi-lalabadi, 477 
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& McClements, 2022). 478 

3.5. Antioxidant and antibacterial activity of films 479 

The oxidation resistance of films was evaluated by ABTS and DPPH radical 480 

scavenging activity, whose results are demonstrated in Fig. 6B. The CS/GA films had 481 

a weak antioxidant capacity of 6.57%, which might be associated with the extent of the 482 

hydroxyl group (C6) and amino group (C2) in chitosan (Xie, Xu, & Liu, 2001). The 483 

addition of anthocyanin noticeably enhanced the antioxidant capacity of the films due 484 

to many phenolic groups in the anthocyanin molecular structure (Alizadeh Sani et al., 485 

2022). At present, a lot of studies have reported that the incorporation of anthocyanin 486 

improved the ABTS and DPPH scavenging ability of films, which was consistent with 487 

our research results (Fernández-Marín et al., 2022; Alizadeh Sani, et al., 2022; Wang, 488 

et al., 2022). The thyme oil emulsion further improved the free radical scavenging 489 

ability of the films to more than 85%, which could be mainly because the essential oil 490 

was an excellent antioxidant and acted in conjunction with anthocyanins (Fernández-491 

Marín et al., 2022). It should be noted that the A-CS/GA films' radical scavenging 492 

ability to ABTS was significantly higher than that to DPPH, while it was the opposite 493 

in emulsion films. This phenomenon might be associated with the different solubility 494 

of anthocyanins and essential oil (Roy & Rhim, 2021c). 495 

The dynamic antimicrobial activity was evaluated against two model bacteria (E. 496 

coli and S. aureus), which is shown in Fig. 6C and D. The microorganisms in the 497 

control group grew rapidly, and the bacterial number reached 109 CFU/mL in 12 h. The 498 
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CS/GA films showed weak antibacterial activity, while the bacteria also proliferated to 499 

107 CFU/mL in 24 h, which was attributed to the interaction between the positive charge 500 

with chitosan and negatively charged cell membrane, leading to membrane damage and 501 

cell content leakage (Mahmood Alizadeh-Sani et al., 2021). The further incorporation 502 

of BOA enhanced the antibacterial potency of the films due to the polyphenol structure 503 

of anthocyanin (Sani et al., 2021). The antibacterial properties of the emulsion films 504 

increased obviously, which could be due to the excellent antibacterial activity of thyme 505 

oil and the slow-release effect of the emulsion (Zhang et al., 2021). In contrast, the 506 

addition of thyme oil emulsion and higher concentration anthocyanin films completely 507 

prevented the bacterial growth after 4 h, indicating that the two played an antibacterial 508 

role together to further improve the antibacterial property of the films, which was 509 

similar to the previous report about the bioactive films integrated with cinnamon oil 510 

and rutin (Roy & Rhim, 2021c). It was noteworthy that the films' inhibition ability on 511 

S. aureus was greater than that of E. coli, which might be related to the discrepancy in 512 

cell wall structure between the two bacteria (Zhang et al., 2019). 513 

3.6. Application of films in milk preservation and spoilage monitoring 514 

Milk usually tends to spoilage and becomes sour during storage. Therefore, we 515 

investigated the stability and applicability of multifunctional films in milk preservation 516 

and freshness monitoring (Fig. 7A). The initial pH and acidity of milk were 6.6 and 517 

16.8°T, respectively. With the increase of storage time, the pH of milk in the control 518 

group decreased rapidly, and the acidity increased significantly. After 24 h, the acidity 519 
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in the control group reached 25°T and exceeded 40°T in 48 h, appearing the obvious 520 

spoilage (Fig. 7C and D). The multifunctional films significantly slowed down the 521 

rancidity process of milk, which made pH maintain above 6 and the acidity keep below 522 

30°T within 48 h. Meanwhile, the films maintained the total number of colonies in milk 523 

below 105 CFU/mL for 48 h, which showed an excellent antibacterial effect (Fig. 7E). 524 

Some researchers constructed starch films containing carrot anthocyanins, which were 525 

applied to the storage of milk. The results showed that the acidity of milk was 28°T and 526 

the total number of colonies reached 107 after 48 h of storage (Moazami Goodarzi, et 527 

al., 2020). This indicated that compared with previous studies, our multifunctional film 528 

had a better preservative and fresh-keeping effect, which could prolong the shelf-life of 529 

milk. In addition, the films containing BOA had the function of indicating milk 530 

freshness (Fig. 7B). After 48 h, the microorganisms in the milk exceeded 107 CFU/mL, 531 

indicating that the milk had deteriorated (Moazami Goodarzi, et al., 2020). At the same 532 

time, the film color changed from green to red, and the a* value also changed from -533 

3.84 to 3.06 (Fig. 7F). Meanwhile, the strong positive correlation between the total 534 

number of colonies and chroma a* (R2 = 0.994) was depicted in (Fig. S4), and it was 535 

estimated that an exponent model best matched the data. Moreover, the chroma a* was 536 

also correlated with the acid of milk and had a higher precision index (R2 = 0.995). 537 

These results indicated that we could recognize the freshness of milk from the change 538 

of film color. Moreover, the ΔE value of 3A-E-CS/GA films always maintained above 539 

20 (Fig. 7G), which was easy to observe with the naked eyes. Previous studies added 540 
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blueberry anthocyanin, purple and black eggplant anthocyanin, or shikonin to 541 

biopolymer films to fabricate intelligent packaging for milk storage (Gao, et al., 2022; 542 

Yong, et al., 2019; Roy & Rhim, 2020). Their results showed that the color of the film 543 

changes from dark purple or dark blue to light purple or light blue, which might be 544 

detrimental to consumers' visual discrimination. Compared with these studies, the 545 

process from green to red was more obvious, which was more conducive to visual 546 

observation. Therefore, these results indicated that our multifunctional films had 547 

excellent application potential in prolonging the shelf-life of milk and monitoring milk 548 

freshness. 549 

4. Conclusions 550 

In summary, novel multifunctional films based on chitosan/gum Arabic were 551 

successfully fabricated by incorporating thyme oil emulsion and blood orange 552 

anthocyanins. The addition of anthocyanin and emulsion improved the films' optical 553 

properties, making them have excellent UV barrier properties. Anthocyanin could be 554 

used as a plasticizer to improve the mechanical properties of the films, whose 555 

elongation at break increased to 76.1%. The hydrophobicity of the essential oil 556 

increased the barrier properties of the film, which made the films' water vapor 557 

transmission rate decrease significantly. Meanwhile, the film color rested with the 558 

environmental pH and acid gas content, which was attributed to the pH color 559 

responsiveness of anthocyanin and could be potentially applied to monitor food 560 

freshness. In addition, the multifunctional films had a slow-release effect on the 561 
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essential oil, giving them excellent antioxidant and dynamic antibacterial abilities. The 562 

films effectively prolonged the shelf-life of milk, which could be reflected in inhibiting 563 

the reproduction of spoilage bacteria and slowing down the rancidity phenomenon. The 564 

films could also monitor milk spoilage in real-time by color changes (from yellow-565 

green to red) and had high visual recognition. This multifunctional packaging material 566 

is promising to be further used in the food industry due to its excellent capacities for 567 

food preservation and quality monitoring. 568 
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Table 1 Physico-mechanical, colorimetry and functional properties of the multifunctional packaging films (Different letters indicate significant 

difference, P＜0.05). 

Parameters CS/GA A-CS/GA E-CS/GA 1A-E-CS/GA 3A-E-CS/GA 

Appearance 

     

Thickness (μm) 34.35±1.28a 36.15±2.20a 43.45±1.03b 43.85±1.63b 44.2±4.88b 

Moisture content (%) 27.50±0.49c 26.98±0.78c 21.63±0.84b 21.25±0.48b 19.41±0.75a 

Water solubility (%) 26.79±1.04b 28.63±1.86b 19.83±00.74a 20.61±0.69a 21.71±0.51a 

Transparency 

(logT600/mm) 
56.61±0.05e 49.84±0.08d 42.12±0.13c 39.46±0.06b 37.36±0.07a 

Tensile strength (MPa) 20.45±1.13a 25.31±2.14a 34.87±3.66b 32.94±1.29b 31.89±2.50b 

Elongation at break (%) 40.78±5.29a 48.75±2.63a 61.26±1.96b 67.05±1.98bc 76.10±6.09c 

L* 89.69±1.08e 71.31±1.29d 86.81±1.57c 77.21±1.45b 66.45±2.13a 

a* -2.08±0.14c -9.79±1.30a -2.06±0.12c -7.43±0.93b -8.88±1.30a 

b* 4.30±0.30a -22.38±1.22d 13.28±1.19b 14.49±1.76bc 16.03±1.70c 

ΔE 6.73±0.81a 33.56±0.83d 15.67±0.55b 23.55±2.38c 33.43±1.85d 

Notes: “CS/GA” was the chitosan/gum Arabic film, “A-CS/GA” was the chitosan/gum Arabic film with 3 mg/mL anthocyanin content, “E-CS/GA” 

was the TO emulsion-chitosan/gum Arabic film, “1A-E-CS/GA” and “3A-E-CS/GA” were the TO emulsion-chitosan/gum Arabic films with 1 

Jo
urn

al 
Pre-

pro
of



mg/mL and 3 mg/mL anthocyanin content. 
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Table 2 Color variations of the multifunctional packaging films at different pH (3.0-13.0) (Different letters indicate significant difference within 

one formulation of samples, P＜0.05). 

Samples pH L* a* b* ΔE Appearance 

CS/GA 3.0 91.14±0.15l,m,n -1.93±0.04i 4.18±0.05a 5.60±0.11a 

 

 5.0 91.47±0.07l,m,n -1.92±0.04i 4.30±0.07a 5.49±0.04a 

 

 7.0 91.88±0.03n -1.91±0.05i 4.31±0.14a 5.27±0.11a 

 

 9.0 91.61±0.10mn -1.97±0.06i 4.06±0.06a 5.22±0.07a 

 

 11.0 91.12±0.61l,m,n -1.95±0.02i 4.00±0.13a 5.50±0.38a 

 

 13.0 90.45±0.57l,m -1.97±0.05i 3.84±0.05a 5.82±0.43a,b 

 

A-CS/GA 3.0 90.98±0.32l,m,n -0.41±0.07m 5.51±0.19b 6.81±0.34b 

 

 5.0 88.52±0.42k -1.22±0.01k 6.44±0.12c 8.99±0.37c 

 

 7.0 90.33±0.07l,m -2.69±0.02h 8.27±0.90d 9.57±0.75c 

 

 9.0 90.22±0.08l -2.95±0.03g,h 8.34±0.07d 9.70±0.10c 
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 11.0 87.2±0.20j -3.70±0.05f 10.94±0.18f 13.55±0.26e 

 

 13.0 91.12±0.05l,m,n -1.83±0.01i,j 13.63±0.79i 14.25±0.03e,f 

 

E-CS/GA 3.0 86.01±0.99i,j -1.91±0.06i 12.06±0.58g,h 15.00±0.38f,g 

 

 5.0 83.75±0.61g,h -1.98±0.05i 15.29±0.43j,k 18.91±0.70i 

 

 7.0 87.13±0.22j -1.97±0.04i 13.28±0.23i 15.40±0.29f,g 

 

 9.0 85.43±0.93i -1.58±0.06j 10.95±0.10f 14.44±0.54e,f,g 

 

 11.0 83.18±0.26f,g,h -1.97±0.07i 12.98±0.35i 17.43±0.43h 

 

 13.0 82.65±0.41d,e,f,g -1.94±0.03i 13.67±0.35i 18.30±0.41h,i 

 

1A-E-CS/GA 3.0 86.26±0.22i,j -0.70±0.04l 6.91±0.10c 10.97±0.24d 

 

 5.0 86.66±0.87i,j -2.14±0.02i 8.00±0.67d 11.46±0.65d 

 

 7.0 78.94±0.63c -3.08±0.14g 9.84±0.56e 18.68±0.82i 

 

 9.0 84.01±0.13h -3.16±0.16g 11.07±0.72f 15.56±0.60g 

 

 11.0 81.45±0.74d -3.23±0.23g 12.77±0.29h,i 18.56±0.70h,i 
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 13.0 82.00±0.18d,e,f -4.47±0.07d 16.06±0.32k,l 20.79±0.14j 

 

3A-E-CS/GA 3.0 71.50±1.33a 5.50±0.50o 10.84±0.58f 26.52±1.03n 

 

 5.0 72.10±1.40a 2.86±0.29n 11.35±0.40f,g 25.64±1.45m,n 

 

 7.0 81.86±0.49d,e -4.04±0.09e 13.08±0.68i 18.59±0.80h,i 

 

 9.0 77.19±0.42b -5.29±0.24c 14.78±0.51j 23.30±0.38k 

 

 11.0 82.99±0.80e,f,g,h -6.25±0.21b 16.26±0.22l 20.72±0.50j 

 

 13.0 81.91±0.18d,e,f -6.75±0.09a 20.20±0.48m 24.60±0.40l 

 

Notes: “CS/GA” was the chitosan/gum Arabic film, “A-CS/GA” was the chitosan/gum Arabic film with 3 mg/mL anthocyanin content, “E-CS/GA” 

was the TO emulsion-chitosan/gum Arabic film, “1A-E-CS/GA” and “3A-E-CS/GA” were the TO emulsion-chitosan/gum Arabic films with 1 

mg/mL and 3 mg/mL anthocyanin content. Jo
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FIGURE CAPTIONS 

Fig. 1. (A) Schematic diagram of blood orange anthocyanin extraction and 

multifunctional emulsion-films' fabrication. 

Fig. 2. (A) Appearance, (B) structural transformation, (C) UV-visible spectra of the 

blood orange anthocyanin solutions (3 mg/mL) measured at different pH values (1.0-

14.0). 

Fig. 3. (A) Light transmittance spectra, (B) water vapor permeability (WVP), and (C) 

water contact angle of the multifunctional packaging films (“CS/GA” was the 

chitosan/gum Arabic film, “A-CS/GA” was the chitosan/gum Arabic film with 3 

mg/mL anthocyanin content, “E-CS/GA” was the TO emulsion-chitosan/gum Arabic 

film, “1A-E-CS/GA” and “3A-E-CS/GA” were the TO emulsion-chitosan/gum Arabic 

films with 1 mg/mL and 3 mg/mL anthocyanin content, different letters indicate 

significant difference, P＜0.05). 

Fig. 4. SEM image of surface and cross-sectional morphologies of the multifunctional 

packaging films (“CS/GA” was the chitosan/gum Arabic film, “A-CS/GA” was the 

chitosan/gum Arabic film with 3 mg/mL anthocyanin content, “E-CS/GA” was the TO 

emulsion-chitosan/gum Arabic film, “3A-E-CS/GA” were the TO emulsion-

chitosan/gum Arabic films with 3 mg/mL anthocyanin content, the scale bars were 10 

μm, 2 μm, and 1 μm). 

Fig. 5. (A) FT-IR spectra, (B) XRD patterns, (C) TGA, and (D) DTG profiles of the 

multifunctional packaging films (“CS/GA” was the chitosan/gum Arabic film, “A-

CS/GA” was the chitosan/gum Arabic film with 3 mg/mL anthocyanin content, “E-
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CS/GA” was the TO emulsion-chitosan/gum Arabic film, “3A-E-CS/GA” were the TO 

emulsion-chitosan/gum Arabic films with 3 mg/mL anthocyanin content. 

Fig. 6. (A) Release rate of thyme oil to different food simulants, (B) antioxidant activity, 

and (C-D) dynamic antibacterial activity of the multifunctional packaging films 

(“CS/GA” was the chitosan/gum Arabic film, “A-CS/GA” was the chitosan/gum Arabic 

film with 3 mg/mL anthocyanin content, “E-CS/GA” was the TO emulsion-

chitosan/gum Arabic film, “1A-E-CS/GA” and “3A-E-CS/GA” were the TO emulsion-

chitosan/gum Arabic films with 1 mg/mL and 3 mg/mL anthocyanin content, different 

letters indicate significant difference, P＜0.05). 

Fig. 7. Application of the films to monitoring and maintaining milk freshness: (A-B) 

Appearance of milk and films (C) pH values and (D) acidity, (E) total bacterial count 

of milk during storage period, (F-G) color variations (a*, ΔE) of the multifunctional 

packaging films during milk storage (“E-CS/GA” was the TO emulsion-chitosan/gum 

Arabic film, “1A-E-CS/GA” and “3A-E-CS/GA” were the TO emulsion-chitosan/gum 

Arabic films with 1 mg/mL and 3 mg/mL anthocyanin content).  Jo
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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Highlights 

⚫ Blood orange anthocyanins (BOA) were used as pH-sensitive color indicators 

⚫ Biopolymer-based films incorporating BOA and TO emulsion were fabricated 

⚫ The color of films responded sensitively to acidic/alkaline environment 

⚫ The films exhibited excellent antioxidant and antibacterial properties 

⚫ The films can be used to prolong and visually monitor the food freshness 
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